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SUMMARY 

An integral equation of Abel type is derived for the wake strength in steady flow over a yawed slender 
wing. An analytic solution is obtained for a triangular plan form, and numerical results for other configura- 
tions. 

1. Introduction 

The original slender-wing theory of  Jones [ 1 ] assumes an 'expanding' plan form, such that no 

wing-wake interaction occurs. This theory leads to a very simple conclusion, that the lift 

depends only on the properties of  the section of greatest span. A similar result (derived here) 

applies for the roll moment ,  in laterally asymmetric flow. 
In cases where wing-wake interaction occurs, e.g. when there is a highly-swept trailing edge, 

the slender-wing theory is less simple in its detail. For symmetric swallow-tailed swept wings, a 
number of  authors (e.g. [2], [3]) have reduced the mathematical problem to a one-dimensional 

singular Volterra integral equation. The unknown quantity is, in effect, the strength of  the 

wake vortex sheet, which must be determined section by section, starting at the point of  com- 
mencement  of  the wake, and working downstream. The kernel of  the integral equation de- 

pends on the nature of  the cross-flow geometry; for doubly-connected geometries, such as the 

swallow-tailed airfoil, it involves elliptic functions. 

Although there is some computational difficulty in solving such an integral equation, the 

problem is still far simpler than the full lifting-surface problem, at arbitrary aspect ratio. That 

problem involves a singular Fredholm integral equation in two dimensions, and is therefore far 

more demanding upon numerical accuracy. The rnid-70's state of  the art for lifting-surface 

computer  programs is surveyed by Wang [4] and, although the achievements are impressive, 

there would still seem to be a place for the 'approximate but  more accurate' (when there is 

adequate slenderness!) low-aspect-ratio limiting theories. 

One important case, which does not appear to have been worked out in detail, is a yawed 
simple wing, as in Figure 1. In an (x, y, s) co-ordinate system, with y normal to the mean plane 
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Figure 1. Sketch of yawed slender wing in plan. 

of  the wing, s in the streamwise direction, and x to starboard, we assume that the starboard 
edge 

x = b(s), 0 < s < L, (1.1) 

is always a leading edge, whereas the port edge 

x = a(s), 0 < s < L ,  (1.2) 

is always a trailing edge, and we set a(o) = 0. These conditions are satisfied if, for example, 

both a(s) and b(s) are monotone-increasing functions, with b > a. Thus, the wake commences 

at the section s = 0, and occupies the whole region 0 < x < a(s), 0 < s < L. Slenderness requires 
that a, b "~ L. 

The nose of the wing may be at s = 0; however, this is not essential, since we can simply 
append a 'regular' wake-free slender lifting surface with s < 0, to the wing under consideration. 

Similarly, the wing may continue for s > L, or else may terminate abruptly there. In this con- 

text, 'abrupt' termination, either at s = 0 or s = L, means termination within a distance in the 

s-direction, that is small compared to that for s-wise rates of change. This means, for example, 

that termination in distances comparable to the span parameters a, b, is equivalent to instan- 

taneous termination, to leading order in slenderness. Such terminations are sketched as dashed 

lines in Figure 1. 
The wing itself is supposed to be of zero thickness, and to have equation 

y = ~(x, s), (1.3) 

where r~ is a small quantity. We retain only 007) quantities from now on, using a perturbation 

velocity potential q~(x, y, s)= O(r/). Thus, the linearized boundary condition on the top and 
bottom surfaces of the wing is, with 0(~ 2) error, 

~y (x, o+, s) = un~(x, s), a(s) < x < b(s). (1.4) 

The function ~b is odd iny,  and hence vanishes a ty  = 0 except in the wing and its wake. 

The corresponding linearized pressure perturbation is 

p(x, y, s)=-pU(~s(x, y, s), (1.s) 
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and hence the wake boundary condition is 

¢~(x, 0+,s)=0, O < x < a ( s ) .  

Upon integration of (1.6), we set 

(1.6) 

¢(x, o+_, s) = +- ¢(x) ,  o < x < a(s), (1.7) 

for some function~(x) to be determined. The wake is thus a vortex sheet, with strength 2~(x) 
at lateral co-ordinate x. 

The general incompressible lifting-surface problem is to solve the three-dimensional Laplace 

equation for a potential ¢(x, y, s) that is an odd function of y ,  vanishing at infinity, and satisfy- 
ing the boundary conditions (1.4), (1.6) on the plane y = 0. For a unique solution at arbitrary 
aspect ratio, we must include, in addition, the Kutta condition of continuity of pressure across 
the trailing edge. The slenderness, or low-aspect-ratio, simplification is in principle nothing 
more than neglect of streamwise derivatives in the governing equation, leaving the two-dimen- 
sional Laplace equation in the (x, y)  plane, with s as a mere parameter. This approximation is 
also valid if the fluid is compressible, even at moderate supersonic speeds. It is notable that, in 
the 'classical' low-aspect-ratio theory, in which there is no wake-body interference, the Kutta 
condition must then be abandoned, since the solution is uniquely determined section by sec- 

tion, starting from the nose. 
With applications to swimming of fish in mind, Newman and Wu [5] have solved slender- 

body problems similar to those considered here. Their work is more general, in that it treats 

unsteady flows and allows non-zero body thickness, but less general in allowing no spanwise 
distribution of camber or twist. The present problem has its motivation in planing-surface 
theory ([6], [7], [8]) for small-draft boats, which is equivalent to lifting-surface theory at 
sufficiently high Froude number. The yawed planing-surface configuration is important for 
high-speed boats in turns, and for surfboards [9]. Yawed wings have also been proposed for 
supersonic airplanes [ 10]. 

2. Solution of the cross-flow problem 

We now solve the problem illustrated in Figure 2, for irrotional flow in the (x, y )  plane, over a 
section a < x < b of the wing at fixed s, and its accompanying wake 0 < x < a~ At the leading 
edge x = b, there is an inverse-square-root singularity in the fluid velocity, whereas no such 
singularity is tolerable at the trailing edge x = a. The latter requirement is, in effect, a version 
of the Kutta condition. 

We introduce the complex function 

W(z)  = (z - b) 2 (z - a) 2f'(z) (2.1) 

where 

z = x + iy, (2.2) 

Journal ofEngineeringMath., Vol. 13 (1979) 47-62 



50 E. O. Tuck 

Iv 41- at®. 

\ 
4 = o  

Y 

w a k e  ~ w /ll///ll/llllll.N~..kkkkk 

4-0, 2 ~-® 

~ y  = Url s ~ = o 

Figure 2. Cross-flow boundary-value problem. 

x 

and 

f (x)  = (~(x, y, s) + i~(x, y, s) (2.3) 

is the complex velocity potential at station s. The branches of the square-root functions are 

such that, for example, 

! ± 

(z - b) ~ ~ + i(b - x)" , y -+ 0+. (-2.4) 

Since f '(z),  and hence W(z), tends to zero as t z [ ~ ~ ,  Cauchy's theorem implies that the 
real and imaginary parts of W(z) are Hilbert transforms of each other along the x-axis. In par- 
ticular, we have 

W(x + iO) = -~ _i r=j_ W(t +_ iOs (2 .5)  
7T o~ ~ -- X 

the integral being of Cauchy-principal-value form. 

There is no contribution to the integral in (2.5) for t < 0 or t > b, since ¢ vanishes there, 
and hence so does Cx and ~ W .  In the remainder of the x-axis, 

W(x + iO)= 

and hence 

+ 
• - - X  

X ~ a  (Oy q- iOx), xe(a, b) ,  

b - x  
~ ($x -#Py)'  xe(0,a),  

(2.6) 

~ ' W ( x  + iO)= 1 lab dt V b  - t - - -~ rt - x T - s -  d ~y(t, o+,_ s) 

¥~fa at b-t 
t - x ~ Cx(t, 0+_, s). (2.7) 
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We now make use of the boundary conditions (1.5), (1.7), to give, for xe(a, b), 

+_~x(x,O+,s) = U V x - a  fa~ d~ ~ b - ~  ~s(~,s ) 
- --~ ~ ~--x r ~ - a  

1 ~x-a f: at V~-~ ¢,(~). (2.8) 
v o - x  ~ - x  

If ~(~) were known, (2.8) would provide the required solution, since, from the value of the 
lateral velocity component q5 x on the wing, we can compute all forces and moments of interest. 
Before we can do this, however, we must determine ~(~), as follows. 

First we integrate (2.8) from x = a to x = b, invoking continuity at these points, i.e. setting 

$(a(s), 0±, s) = + ep(a(s)) (2.9) 

and 

:(b(s), 0±, s) = o. 

Thus we have 

l? V b = ~  - ¢(a(s)) = v ~ d~ -g-5-d ns(~, s) Io(/~) 

+ / £  d~ V~a b - ~  ~ •' (~)Io(~), 

where 

(2.10) 

(2.11) 

Io(~) = n ~ - x x 

This is a well-known integral ([11], p. 250) and takes the value 

1, ~e(a,b) 
I°(~) = , ]'-~-C~a - ~ (2.13) 

1 - V T -  ~ ,  ~ ( o , a ) .  

Hence (2.11) reduces to 

- ® ( a ( s ) ) =  Vf"ad~ V~--~b-~ ~s(~,s)+fa d~ ~b-~ 0,(~) 

- £  ®' (~)d~ 
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The quantity - cb(a(s)) cancels from both sides, leaving finally 

fa de y b- e ¥(e)=-  v fa de 1/a ns(e, s) (2.14) 
a e ? e  - a  

Equation (2.14) is the essential result of this analysis. It is an integral equation to determine 
the wake lateral velocity function ~'(x),  given the wing shape 17(e, s). The mathematical charac- 
ter of this integral equation is displayed more clearly if we write 

u(x) = ~'(x), x = a(s), 

and 

b(s) = B(x), (2.1'5) 

giving 

de u(e)K (x, e) = g(x), (2.16) 

where 

K (x, e) = ~ - e  
e 

(2.17) 

and 

l =e g ( x ) = - u  Jx de V e - x  nil ,  s). (2.18) 

When the wing geometry is prescribed by prescribing a(s), b(s) and rl(x, s), the functions B(x), 

g(x) and K(x, e) are known, and (2.16)is a singular Volterra integral equation of the first kind 
to determine the unknown function u(x). The singularity at e = x is of an inverse-square-root 
nature, and hence the equation is a generalization of Abel's integral equation [12]. 

Except in two special cases to be discussed later, analytic solution of (2.16) is out of the 
question. However, a number of successful methods have been developed for numerical solu- 

tion of integral equations of Abel type (e.g. [13], [14]), and we may consider that the problem 
is, in effect, solved, now that we have reduced it in difficulty to a computational task as straight- 
forward as solving (2.16). 

It is important to note that the Volterra character of the integral equation means that it can 
be solved by a marching process, starting at x = 0 (or s = 0) and moving downstream. Thus, in 
contrast to the case where there is no wake, sections of the wing do have an influence on other 
sections downstream. However, in opposite contrast to the lifting-surface or arbitrary-aspect- 
ratio case, there is no upstream influence; the flow at any section is independent of conditions 
downstream of it. 
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In the special case of untwisted or sectionally-flat wings, in which the local angle of attack 

-rTs(x, s) : a(s) (2.19) 

is independent of x, the integrals on the right of (2.14) or (2.18) may be evaluated explicitly. 
Thus (2.14) may be written 

f ~  d~ V~a - ~ ei,'(~)= rr Ua(b -a) ,  (2.20) 

which is equivalent to an integral equation derived by Newman and Wu [5], eq. (5.8)). 

3. Forces and moments 

If we define dF as the element of force in the y-direction on that portion of the wing between s 
and s + ds, then 

Since 

dF eb 
- Ja [p(x, 0 ,s) -p (x ,  O+,s)ldx (3.1) 

ds 

= 2p U f ;  Cs(X, 0+, s) dx 

d fba(~dx= 2 b (~sdX+b,c~(b,O+,s)_a,¢(a,O+,s) 
ds 

= fa ~ 49sdX - a'cb(a), 

we have 

dF = ~ s  £7 dpdx + a'gP(a)~ 

• ? I.e. dF = F (s) ds, 

where 

F(s) = 2 p U 

=2pU ¢(x, O+,s)dx, 

(3.2) 

(3.3) 

(3.4) 

Efa ¢(x, o+,s)ax + fo  (x)dx  
(3.5) 
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since ~(x) = ¢(x, 0+, s) for x e (0, a). Equation (3.5) may be considered as a form of the Kutta- 
Joukowski theorem, since the complete wing-wake combination is modelled by a vortex sheet 
of strength 2q~(x, 0+, s) per unit lateral distance. 

By an integration by parts, we have 

where 

Thus 

F(s) = - 2pU f b  ° x ¢x(X, 0+, s)dx 

- 2 p U  f a  d~ V ~ a - ~  ~'(~)Ia (~) 

- 2 o r  f~o ~ ,~'(~)d~, 

l f f  ax x l / r~-a  
11 (~) = rr ~ - x - x 

b - a  
- + ~ Io(~) .  

2 

The first part of (3.10) is zero because of the integral equation (2.14), and we have 

F(s) = FB(s ) + Yw(s ) 

where 

FB(s)=-  ZpU2 f f  d~ ~ / (~ -a ) (b  - ~) ~7~(~,s), 

and 

Fw(s)= 2Pt: f o  d~ ,,/(a - ~)(b - ~) ~,'(~). 
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Upon examination of  the form of the expressions (3.12), (3.13) it is seen that FB is the lift 

force one obtains for a slender wing in the absence of a wake. The integral (3.12)can be evaluated 

uniquely and separately for each cross,section s, and is independent of the geometry at any 

other cross section, given only the streamwise slope or local angle of attack-r~ s at the section s. 
On the other hand, the quantity F w is a correction to F B, depending on the presence of the 

wake, in which there is an effect at station s, indirectly through the integral equation (2.14) 
determining q~'(~), of stations forward ofs. 

The net lift force on any section of the wing extending from s = 0 to s = L, in which the port 

side is trailing and the starboard side leading, as assumed throughout this paper, is given by 
F(L) - F(O). The sway force in the x direction and drag force in the s direction, as well as the 

yaw moment about the y axis, are second-order quantities with respect to 72, and will not be 
considered here. The remaining two moments are of first order in r/, and determine the important 

longitudinal and lateral position of the center of pressure of the lifting forces. 

The longitudinal center of pressure is determined by computation of the (nose-down) pitch 

moment Mp about the x-axis, 

Mp= f L s  dF=LF(L)-  f L  F(s)ds. (3.14) 

This quantity may therefore be evaluated directly, using the already-computed longitudinal lift 

distribution function F(s). 
In order to evaluate the lateral position of the center of  pressure, we must return to the 

complete pressure distribution on the wing, to compute the (starboard-up) roll moment MR, 

Mp(s) = 2pU f ~  x¢(x, 0+, s)dx 

=-pU f b  ° x~¢x(x, O+,s)dx 

(3.15) 

= MRB(S ) + M R w(S), (3.16) 

where 

MRB(S)=--pU2 f b  a d~ ~/(~-a)(b-~)r/s(~,s)[~+ a 2 b ]  (3.17) 

and 

Again, MRB is the roll moment for a wing without a wake, and depends only on the furthest-aft 
station s under consideration. For example, if the wing is symmetrical about the center point 

= (a + b)/2, we have 
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" MR,~(s) = ~ - ~ ) ~ ( s ) ,  (3.19) 

i.e. the centre of pressure appears to be located at the centerline of this station. This is no longer 

the case when there is a wake, as evidenced by the correction introduced by the term M R w(S). 

Note that, even in the absence of the wake (e.g. if the port edge is a leading edge), the centre 

of pressure for a wing extending from s = 0 to s =L does not lie on the wing centre-line, since 

the centre of pressure is necessarily forward of the trailing edge. This means that a slender 

pointed wing yawed even slightly to port, tends to roll in such a way that its starboard edge 

rises. This asymmetry with respect to the wing center line is apparent in the section-wise pres- 

sure distribution, the strength of the port leading edge singularity being less than that of the 

starboard edge, and ultimately vanishing as the port edge becomes tangent to the free-stream 
direction. 

4. Special cases 

The special case of sectionally-flat wings has already been mentioned. This specialization does 

not lead to any essential simplification in the task of solving the integral equation (2.16). 

However, the resulting explicit right-hand-side in (2.20), i.e. 

/T 
g(x )  = -~ U~(s ) (B(x )  - x ) ,  x =a(s) ,  (4.1) 

may be re-interpreted in the general case (once g(x) has been computed by (2.20)), as defining 

an 'effective' local angle of  attack a(s) ,  whenever (2.19) is not satisfied. The further specializa- 

tion to an uncambered (i.e., everywhere- f lat )  wing, with a = constant, also does little to ease 

our task, except that now the whole problem is specified by the single input function B ( x ) .  For 

definiteness, we assume henceforth that this is the case, i.e. seek to solve 

| ~ -  ~ a U~(B(x) - x), f f  d~ u(~) r x - ~ = -2 (4.2) 

for various choices of B(x), with a (and U) constant. 

There appear to be only two* choices for B ( x )  that lead to an explicit solution, namely 

B ( x )  = b ° = constant, (4.3) 

and 

B ( x ) / x  = coth 27 = constant. (4.4) 

* However, there is a third choice, B = b o + x, that reduces the problem to that of evaluating an inverse 
Laplace transform 
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The first case (4.3) corresponds to a starboard edge x = b(s) = b o = constant that is parallel to 

the free stream, and hence borderline between leading and trailing. Thus, the classical [1] 
slender wing theory should apply, and, for everywhere-flat wings, indicate zero loading on these 
sections of  the wing. 

The corresponding simplification to the integral equation reduces it to an Abel equation, 
with explicit solution 

o r  

1 b o - 2x  
u (x )  = -~ Us (4.5) 

x / x ( b  o - x )  ' 

• (x)  = u s  v X(bo - x ) .  (4.6) 

In fact, in this case ¢(x, 0+_, s) = + ~ (x )  for all x,  0 < x  < b o, so that even on the wing a < x  
< b o itself we have Cs = 0, and the loading vanishes. Alternatively, we find that (3.12) and 
(3.13) give equal and opposite lift contributions, so that the total in zero. If a is not constant, 
the solution of  the Abel equation (4.2) subject to (4.3) can be written down in terms of  a single 
quadrature. 

The special case (4.4) is somewhat less trivial. This case includes, as a further specialization, 
a simple yawed delta wing of  triangular planform, with 

a(s) = 01s, (4.7) 

and 

i.e. 

b(s) : Ous, (4.8) 

02X 
B ( x )  = - -  (4.9) 

01 

Thus the delta wing has a nose angle 02 - 0 1 ,  and is yawed at an angle (01 + 02)/2 to the 
stream. The ratio between leading and trailing edge angles defines the .constant 7 in (4.4), i.e. 

0--L = coth 27. (4.10) 
01 

More generally, (4.4) is true whenever the leading and trailing edges have the same shape, 
whether or not that shape is a straight line; thus it appfies also to some 'banana' or 'scimitar' 
configurations. 

If (4.4) holds, it is clear that the wake strength is constant, i.e. (4.2) possesses a solution 
with u (x) = constant, specifically 

7r 
~ ua  

u (x) = (4.11) 
3' + sinh 3' cosh 3' 
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The resulting forces are 

1 ~r p U 2 a ( b  - a) 2, (4.12) FB=  

and 

F w = laF B , (4.13) 

where 

U = (¼ sinh 47 - 3 ') /(7 + sinh 3' cosh 3'). (4.14) 

Note that  since 1 < 1 +/a  < cosh 47, the lift lies between that obtained by  ignoring the wake, 

and that  obtained by  'filling it in '  with a solid surface. This is illustrated in Figure 3, where we 

plot  1 +/a  against cosh 27. The abscissa 

cosh 27 = (01 + 02)/(02 - 01) (4.15) 

measures yaw angle/apex half  angle, for a triangular delta wing. 

The corresponding roll moments  are 

a + b  
M R B -  2 FB'  (4.16) 

3.5 

3.0 

2.5 

2.0 

1.5 

I.¢ 

Figure 3. 
zero yaw. 
zero yaw, 

I I I i/// I I y 

i 
Yow Angle /Apex. Half Angle 

Lift force and roU moment for triangular wings as functions of yaw angle. - -  : Lift/Lift at 
: Lift with filled-in wake/Lift at zero yaw. - -  - -  - -  : Roll moment/Roll moment at 
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and 

MRW = VMRB, (4.17) 

where 

1 v = ( I  sinh 47 + g tanh 27 - 7) / (~/+ sinh 3' cosh 7). (4.18) 

In (4.16) (and (4.12)), a and b are evaluated at the aft-most station s = L of  the wing. Figure 3 

also shows 1 + v plotted against cosh 27. 

The total pitch moment  M e is scaled by the same factor 1 + g as the total lift force F, in this 

case. Hence, the presence o f  the wake does not change the longitudinal location of  the centre of  

pressure. For example, the centre o f  pressure on a triangular delta wing remains at the 2/3 

chord point, for all yaw angles. 

On the other hand, since v =~ gt, the presence of  the wake does shift the centre of  pressure 

laterally, from x = (a + b )/2 to 

a + b  ~ l + v  
x -  l ,----7-- ] (4.19) 

2 l e g  

This shift is toward the wake, since/a > v, and thus tends to reduce the roll moment. In the 

limit as 7 -~ ~o, the ratio in (4.19) tends to 3/4, which means that, at least for triangular delta 

wings, the centre of  pressure moves to the wing centre line, at the 2/3 chord point. However, 

for all finite yaw angles, there remains a starboard-up roll moment  about the wing centre line, 

due to yaw to port, whether or not there is a wake. 

The ultimately-linear increase of /a  and v with cosh 27 as 3, ~ ~o in Figure 3, indicates an 

approach to a lifting-line type o f  theory as (b - a)/a -~ o, in which the net forces and moments 

can be computed in a strip-wise manner, using two-dimensional results at FLxed x. For ex- 

ample, in the present case as 3' -+ ~ ,  we find F B -+ 0 and 

1 7 r p U 2 a a ( b _ a )  ' F ~ Fw-~ ~ (4.20) 

which varies linearly with the yaw angle. It is possible that in this limit there is an equivalence 

of  the present theory to the oblique lifting-line theory of  Cheng [15], although this has not yet 

been demonstrated. 

5. Numerical solution for straight-edged wings 

For general input functions B(x),  a numerical scheme for solution of  integral equations of  the 

form (4.2) has been described by Tuck [14]. In essence, this procedure simply replaces integra- 

tion by summation over a uniformly-spaced mesh, using a special set of  integration weights that 
account for the inverse-square-root singularity at ~ = x .  In cases where the expected solution 
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Figure 4. Wake strength (lateral velocity jump) development for a family of straight-edged wings, para- 
metrized by ~. 

u(~) is singular at ~ = 0 .  (c.f. (4.5)), it is also possible to make allowance for this singularity. 

The resulting discrete system of  linear algebraic equations has a triangular matrix, and the solu- 

tion is immediate. Four-to-five figure accuracy is achieved, using an x-wise spacing of  0.025 a(L). 

A general family of  straight-edged wings can be described by 

B(x)  = b ° + (X + 1)x, (S.1) 

for constants b o, X. The condition that x = b(s) be a trailing edge demands that X/> - 1 .  The 

special case (4.3) corresponds to X = - 1 ,  while the special case (4.4) is b o = 0, X = cosech 27. I f  

- 1  ~< X < 0, the wing terminates at x = -bo/X,  at a sharp tail point where a(s) = b(s). If  X = 0~ 

the wing is of  constant span, whereas if  X > 0, the span increases indefinitely downstream. In 

the case k > 0, if we go sufficiently far downstream, i.e. let x (or s) -+ ~ ,  the results become 

insensitive to the initial span b o, and we recover the delta-wing reults o f  the previous section, 

with X = cosech 27. 
Results computed for u(x)  on a TRS-80 microcomputer  are shown in Figure 4, and confirm 

the above features. An inverse-square-root singularity is always present at x = 0, i.e. along the 
track of  the nose. The wing with b o 4= 0 commences instantaneously at x = 0 with non-zero 
span. However, as mentioned in Sec. 1, in the (over-all) low-aspect ratio limit, the same results 
also hold, to leading order, if  there is a short (chord = O(bo) ) finite-aspect-ratio pointed airfoil 
appended for x < 0. In the finite chord case 2, < 0, there is also a (negative) inverse-square-root 
singularity at the tail point. On the other hand, for X ~> 0, the wake velocity tends rapidly to 
the constant delta-wing value (4.1 1) as x ~ o o .  

Figure 5 shows the lift force F, and Figure 6 the centre of  pressure (2, 97) in the special case 
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A note on yawed slender wings 61 

X = 0 of a rectangular wing of constant width b o . The abscissa is the same quantity x/b used in 

Figure 4, but now with x = a(L), and thus measures the angle of yaw a(L)/L, scaled with 

respect to the wing's aspect ratio bolL. Again, the lift lies between the no-wake (zero-yaw) 

value and the 'filled-in-wake' value, shown dashed, but is rather closer to the latter value than 

for the delta-wing of Figure 3. As the yaw angle increases, the lift becomes asymptotically a 
linear function of yaw angle, as would be predicted by a strip-wise formula similar to (4.20). 
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Figure 5. 
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Figure 6. Centre o f  pressure (g, Jr) of  a rectangular wing as a funct ion  o f  yaw angle. Longitudinal  posit ion g 
1 

scaled with respect to length L; lateral posit ion 2e with respect to mid-point  a(L) + -~ b o of  trailing edge. 
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The centre of  pressure moves from the mid-point  of  the leading edge, to the geometric 

centre o f  the wing, as the yaw angle increases from zero. This is displayed in Figure 6 by  scaling 

its longitudinal posit ion s =7  by  the length L,  and lateral posit ion x = 2  by  the co-ordinate 
1 x = a ( L )  + ~ b o o f  the mid-point  o f  the trailing edge. Both plot ted quantities tend to 1/2 as 

the yaw angle b e c o / ~ s  large. 

Note that  the special case chosen in Figure 6 is the one in which the problem can be reduced 

to an inverse Laplace transform. In fact, (c.f. Mirels, [2]), in this case there is an equivalence to 

two-dimensional unsteady flow in the x, y plane, with the s-co-ordinate playing a time-like role, 

and it should be possible to relate the results obtained to those for the so-called Wagner 

problem [16]. 
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